比赛场次 | 186 |
---|---|
比赛名称 | NOIP 2012 Day2 |
比赛状态 | 已结束比赛成绩 |
开始时间 | 2012-11-11 08:30:00 |
结束时间 | 2012-11-11 12:00:00 |
开放分组 | 全部用户 |
注释介绍 |
题目名称 | 借教室 |
---|---|
输入输出 | classrooms.in/out |
时间限制 | 1000 ms (1 s) |
内存限制 | 128 MiB |
测试点数 | 20 简单对比 |
用户 | 结果 | 时间 | 内存 | 得分 |
---|
在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要 向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。
面对海量租借教室的信息,我们自然希望编程解决这个问题。
我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借。共有m份 订单,每份订单用三个正整数描述,分别为dj,sj,tj,表示某租借者需要从第sj天到第tj天租 借教室(包括第sj天和第tj天),每天需要租借dj个教室。
我们假定,租借者对教室的大小、地点没有要求。即对于每份订单,我们只需要每天提 供dj个教室,而它们具体是哪些教室,每天是否是相同的教室则不用考虑。
借教室的原则是先到先得,也就是说我们要按照订单的先后顺序依次为每份订单分配教 室。如果在分配的过程中遇到一份订单无法完全满足,则需要停止教室的分配,通知当前申 请人修改订单。这里的无法满足指从第sj天到第tj天中有至少一天剩余的教室数量不足dj个。
现在我们需要知道,是否会有订单无法完全满足。如果有,需要通知哪一个申请人修改 订单。
第一行包含两个正整数n,m,表示天数和订单的数量。
第二行包含n个正整数,其中第i个数为ri,表示第i天可用于租借的教室数量。
接下来有m行,每行包含三个正整数dj,sj,tj,表示租借的数量,租借开始、结束分别在 第几天。
每行相邻的两个数之间均用一个空格隔开。天数与订单均用从1开始的整数编号。
如果所有订单均可满足,则输出只有一行,包含一个整数 0。否则(订单无法完全满足) 输出两行,第一行输出一个负整数-1,第二行输出需要修改订单的申请人编号。
4 3 2 5 4 3 2 1 3 3 2 4 4 2 4
-1 2
第 1 份订单满足后,4 天剩余的教室数分别为 0,3,2,3。第 2 份订单要求第 2 天到 第 4 天每天提供 3 个教室,而第 3 天剩余的教室数为 2,因此无法满足。分配停止,通知第 2 个申请人修改订单。
对于 10%的数据,有1 ≤ n,m ≤ 10;
对于 30%的数据,有1 ≤ n,m ≤ 1000;
对于 70%的数据,有1 ≤ n,m ≤ 10^5;
对于 100%的数据,有1 ≤ n,m ≤ 10^6,0 ≤ ri,dj ≤ 10^9,1 ≤ sj ≤ tj ≤ n。