|
你们竟然还Hack.......%%%%%%%%%
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:17:27
|
|
hhd
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:12:40
|
|
已加,但我并不是作者
|
|
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:11:33
|
|
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:08:38
|
|
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:03:48
|
|
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:02:50
|
|
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:02:01
|
|
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:01:32
|
|
题目 2212 [HZOI 2015] 包子美味
2016-04-05 17:00:06
|
|
题目 2212 [HZOI 2015] 包子美味
2016-04-05 16:59:16
|
|
回复 @Satoshi :
题目 2212 [HZOI 2015] 包子美味
2016-04-05 16:57:12
|
|
作者请加数据范围
题目 2212 [HZOI 2015] 包子美味
2016-04-05 16:56:21
|
|
同样是n^3的做法,为什么差别这么大?
|
|
证明:
Sort the haybales by location. Consider two haybales i and j such that Bessie can start somewhere between those haybales and break through all the haybales from i+1 to j−1, but she can't break haybale i or haybale j. It must be the case then that no haybale between i and j is strictly taller than those two. That motivates the following O(NlogN)solution: Sort the haybales in decreasing order of size. Consider having an empty road, and place the haybales in that order. When placing a haybale, look immediately to its left and to its right and see if you can break through either one of those haybales if you were inside that interval. Mark that interval as "trapped" if so. This will be O(NlogN) as long as you check to make sure that the interval isn't already marked as trapped. 按重量从大到小排序,可以保证区间不会被漏掉 |
|
莫比乌斯反演的裸题。。
|
|
我竟然把sv设成0了。。。都可以去卖萌了QAQ
|
|
这个题竟然半颗星....
题目 1389 number-b
2016-04-05 14:54:17
|
|
最后一句话亮了...话说让他切题的那个人做我右面的右面的左面
页面 63 ZLXSCDay2&&USACO(本周日下午15:00-19:00)
2016-04-05 14:29:22
|
|
最后一句话亮了...话说让他切题的那个人做我右面的右面
页面 63 ZLXSCDay2&&USACO(本周日下午15:00-19:00)
2016-04-05 14:28:39
|