$n\le 10$
暴搜,时间复杂度 $O(n!m)$,期望得分 $20$。
$n\le 300$
令 $p_u$ 表示 $u$ 的父亲节点。根据 $l_i\le r_i<i$,不难有 $p_u<u$。
设 $u<v$,则 $p_v$ 一定在 $(u,v)$ 的路径上。
考虑证明:若 $p_v$ 不在 $(u,v)$ 路径上,当且仅当 $v$ 时 $u$ 的祖先,根据 $p_u<u$ 可以得到 $u$ 的祖先编号小于 $u$,即 $u>v$,与 $u<v$ 矛盾,故原命题得证。
以上完成本题最为关键的结论证明。
若对于每一次加操作,都暴力完成,复杂度显然是指数级。
不过对于每一种加操作,都可以用 $(u,v)$ 表示(下文均假设 $u<v$)且 $(u,v)$ 的加操作可以转化为 $(u,p_v)$ 的加操作。
若对链 $(a,b)$ 的加操作对链 $(c,d)$ 的加操作有转化,必须满足 $b<d$。且对于 $a\ne b$ 的情况,对链 $(a,c)$ 的加操作和链 $(b,c)$ 的加操作之间不会互相转化。
也就是说,我们以第二维按照 $v$ 划分所有链,可以分成若干层,当前层只会影响这层之前的层,且层内部之间不会影响。
可以设计出一个递推状物,设 $g_{u,v}$ 表示所有操作对 $(u,v)$ 这条链加上的期望值,则有:
$${g_{u,p_v}\gets g_{u,p_v}+\frac{g_{u,v}}{r_v-l_v+1}}, u<p_u $$
$${g_{p_{v},u} \gets g_{u,p_v}+\frac{g_{u,v}}{r_v-l_v+1}}, u>p_u$$
注意到编码过程中,为了方便讨论,我们始终只对 $u<v$ 的状态操作,因此若出现 $p_v<u$ 的情况,要操作 $g_{p_v,u}$ 而不是 $g_{u,p_v}$。
其实是简单排列组合原理,每一层内部的转移因为无所谓,所以第一维的枚举顺序可以随便来。
递推完所有的 $g_{u,v}$ 后,考虑计算点 $u$ 的答案,根据结论,只要 $v<u$,那么 $(v,u)$ 的路径一定包含 $(p_u,u)$ 这条链,且对于任意 $(a,u),(b,u)$ 之间互不影响,说明 $(a,u),(b,u)$ 代表的加操作独立,可以直接加起来。
因此答案为 $\sum_{v<u}g_{v,u}$。直接做需要枚举每个点的父亲,时间复杂度 $O(n^3+m)$。期望得分 $60$。
$n\le 2000$
考虑优化这个过程,把 $g$ 数组当成一个二维平面,代码中 $k>i$ 的部分实际上是对横着的一段加上了一个数。$k<i$ 的部分是对竖着的一段加上了一个数。
可以用二维差分优化,递推的过程中求差分的前缀和数组,因为要求前缀和,所以第一维的枚举顺序也需要确定。
时间复杂度 $O(n^2+m)$,期望得分 $100$。