Gravatar
hsl_beat
积分:186
提交:22 / 31

Pro3668  [清华集训 2012] 模积和

不妨设 \( n \leq m \)。 那原式:

$= \sum_{i = 1} ^ n (n \bmod i) \times \sum_{j = 1} ^ m (m \bmod j) - \sum_{i = 1} ^ n (n \bmod i) \times (m \bmod i)$


$= \sum_{i = 1} ^ n \left( n - \left\lfloor \frac{n}{i} \right\rfloor \times i \right) \times \sum_{j = 1} ^ m \left( m - \left\lfloor \frac{m}{j} \right\rfloor \times j \right) - \sum_{i = 1} ^ n \left( n - \left\lfloor \frac{n}{i} \right\rfloor \times i \right) \left( m - \left\lfloor \frac{m}{i} \right\rfloor \times i \right)$


$= \sum_{i = 1} ^ n \left( n - \left\lfloor \frac{n}{i} \right\rfloor \times i \right) \times \sum_{j = 1} ^ m \left( m - \left\lfloor \frac{m}{j} \right\rfloor \times j \right) - \sum_{i = 1} ^ n \left( nm - n \times i \times \left\lfloor \frac{m}{i} \right\rfloor - m \times i \times \left\lfloor \frac{n}{i} \right\rfloor + i ^ 2 \times \left\lfloor \frac{n}{i} \right\rfloor \times \left\lfloor \frac{m}{i} \right\rfloor \right)$


显然对这 3 坨数论分块就可以了


 https://www.luogu.me/article/v919l2og

2025-09-25 20:59:41    
我有话要说
Gravatar
PigFlies
积分:5
提交:6 / 15
太厉害了

2025-09-25 21:18:56    
Gravatar
梦那边的美好TE
积分:687
提交:75 / 132
orz

2025-09-25 21:28:18