Gravatar
梦那边的美好TE
积分:881
提交:89 / 168

前言

由 zlc 和 fhx 提供的思路,orz。

貌似是 COGS 目前的最优解?(可能是其他人的常数太大了)

思路分析

先考虑一个经典的 dp,设 $f_i$ 表示将 $1\sim i$ 划分为若干好数组的方案,则有转移 $f_i=\sum f_{j-1}$,其中满足 $[j,i]$ 是一个好区间。

这样枚举 $i$,枚举 $j$,$O(n)$ 检测,就有 $O(n^3)$ 的 dp 了。注意到 $n\le 5\times 10^5$,考虑优化。

不难发现好的子数组在原数组中,要么是奇数位置为轻元素,偶数位置为重元素;要么是偶数位置为轻元素,奇数位置为重元素,所以我们分两种情况转移:分别是以 $i$ 结尾,奇数位置为轻元素和 $i$ 结尾,偶数位置为轻元素。两者本质没有区别,我们依靠前者讨论。

我们考虑区间左端点 $j$ 可以取到哪些位置,考虑对于任意 $x\in [1,i]$,元素 $x$ 对左端点 $j$ 的约束。

1. 若 $x$ 为奇数位置,作为轻元素约束 $j$。

则 $j$ 必须满足 $[lst_x+1,n]$,即对于任意 $i\in [1,n]$,只要 $j\in [lst_x+1,n]$,区间 $[j,i]$ 就可以满足 $x$ 的限制

........................................................................

该题解待审

........................................................................(剩余 911 个中英字符)

Gravatar
梦那边的美好TT
积分:634
提交:84 / 230

【题解】

        算法一:

       思路:动态规划,$dp[i]$ 是前 $i$ 个元素的有效划分方案数,则 $f[0]=1$(空数组有 $1$ 种划分方式),$f[i]$ 为所有满足 $[j+1,i]$ 是好数组的 $f[j]$ 的和。

       时间复杂度:$O(n^2)$,即 $5000*5000=2.5*10^7$,期望 $15$ 分。

       瓶颈:不能快速判断数组是否是好数组,不能快速累加 $f[j]$;

        算法二:

       思路:有几处优化;

           $1$.对每个元素 $a[i]$,计算 $pre[i]$(上一次出现位置)和 $nxt[i]$(下一次出现位置),所以可以由好数组的性质“对于子数组内的重元素 $a[i]$,其前后出现位置必须在子数组外(否则会影响交替性)”优化判断好数组的条件;

           $2$.若 $j$ 在 $[L..R]$ 内时 $[j+1..i]$ 是好数组,则 $f[i]$ 需要累加 $f[L]+f[L+1]+...+f[R]$,所以用双线段树。好数组有两种起始类型(轻元素开始或重元素开始),需分别维护。因此使用两个线段树 $seg[0]$ 和 $seg[1]$,分别对应两种起始类型,每个线段树节点存储“区间内最大有效长度”和“对应方案数总和”支持区间增减(通过延迟标记)和单点更新;

            $3$.预先生成“区间更新事件”:当遍历到位置 $i$ 时,哪些 $j$ 的范围会因 $a[i]$ 的加入而成为有效划分点,事件按生效位置排序,遍历数组时依次触发,动态更新线段树,确保查询到的 $f[j]$ 都是有效的。

           同样方式计算 $f[i]$,最终需减去重复计算的 $f[i-1]$,对 $1000003$ 取余后输出。

       时间复杂度:$O(n*logn)$,即 $5*10^5*log5*10^5≈10^7$,轻松过 $4$ 秒时限;

       期望得分:$100$;


题目4184  轻重数字 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
     3      评论
2025-10-29 12:53:24    
Gravatar
淮淮清子
积分:946
提交:128 / 236

[CCO 2024] Heavy Light Decomposition


前置知识


分块,DP


简要题意


定义“好的数组”为一个数组内交替出现“轻元素”和“重元素”,轻元素即其在这个数组内是唯一的,重元素即其在数组内出现多次。

有 $n$ 个正整数 $a_i$,求其有多少种划分方案能使划分后的子数组均为好的数组。


分析样例


我们首先要搞懂一个东西,就是划分后好的数组,是指这个子数组是好的,在这个子数组内的轻重元素与原数组并没有关系,每个子数组是互相独立的。


对于样例一,其划分方案如下:


- $[1], [2], [3], [2], [3]$

- $[1], [2, 3, 2], [3]$

- $[1], [2], [3, 2, 3]$

- $[1, 2, 3, 2], [3]$


对于样例二,其划分方案如下:

- $[1], [2], [1], [3], [1]$

- $[1, 2, 1], [3], [1]$

- $[1, 2, 1, 3], [1]$

- $[1], [2], [1, 3, 1]$

- $[1], [2, 1, 3, 1]$

- $[1, 2, 1, 3, 1]$


不明白的建议手推一下。


思路分析


考虑转移


我们定义 $dp[i]$ 为前 $i$ 个元素的合法划分的方案数。


那么,转移方程很显然:$dp[i] = \sum dp[j]$,其中 $j < i$ 且 子数组 $[j + 1, i]$ 是好数组。


实际上含义就是在 $j$ 处划分,新增一个子数组 $[j + 1, i]$,方案累加前 $j$ 个元素的方案数。


考虑好数组的约束


如果 $[j + 1, i]$ 为好的数组,那么需要满足:


1. 类型交替:即数组内的元素轻重交替。

2. 奇偶性约束:如果重元素第一次出现在奇数位,那么奇数位全是重元素,反之。


因此我们如果直接枚举所有的 $j$ 去验证 $[j + 1, i]$ 是否为好数组,时间复杂度为 $O(n ^ 2)$。


考虑优化


对于当前的位置 $i$,我们设其元素大小为 $v$,用 $odd[v]$ 和 $even[v]$ 来记录 $v$ 在奇数和偶数位最近的出现位置,这样的话可以确定 $j$ 的下界。


为了保证子数组 $[j + 1, i]$ 满足类型交替,需要避免 $v$ 元素在数组内出现奇偶性冲突,那么若 $j + 1 < \min(odd[v], even[v])$ 的话,则会使其冲突。


因此我们使 $minL$ 取所有元素 $min(odd[v], even[v]) + 1$ 的最大值,因此 $j > minL - 1$。


然后是最重要的分块,我们将原数组分块,每个块维护两个核心内容,$sum[k][b]$ 表示 $b$ 块满足在奇偶性 $k$ 下的合法的 $dp[j]$ 之和,$kpos[k][b]$ 是在 $k$ 的奇偶性下块 $b$ 是否满足。另外,为了维护分块时的单个元素, 我们维护 $pos[k][i]$ 是单个位置的 $i$ 是否满足奇偶性 $k$。


当我们查询 $[l, r]$ 内符合条件的 $dp[j]$ 之和时,对于整块,只需要判断 $kpos$ 是否有效,然后累加 $sum$ 即可,对于单个的块边缘的元素,则需要满足 $kpos$ 和 $pos$,有效则累加 $dp[j]$。


在区间更新时,只需要标记区间有效和无效,在完整的块上更新 $kpos$,零散的元素更新 $pos$ 和 $sum$。


时间复杂度


分块的单次查询和更新的时间复杂度为 $O(\sqrt{n})$,时间复杂度为 $O(n \sqrt n)$。


简单卡常即可,最慢的点才两秒出头,对于四秒的时间限制完全够用。


题目4184  轻重数字      4      2 条 评论
2025-10-28 21:45:35