
COGS 1476 数三角形

算法1：枚举法

分别从 中枚举三角形的三条边，判断能否构成三角形。

设三角形的三边为 ，则判定条件为两边之和大于第三边，即 且 且 。

枚举时为了避免重复，也为了方便判定，可以按照三边小中大的顺序枚举，那么判定时只需要要求两条小边之和大于最大边即可。

时间复杂度 ，预计得分25分。

算法2

假设先枚举最长边 ，为了保证能构成三角形，次大边只能在 中选。例如 时，如果次大边选了 ，那么最小边只能选 ，这些都无法构

成三角形，次大边只能在 中选。

当次大边也确定时，最小边的可选范围也就确定了，例如最大边选了 ，次大边选了 ，那么最小边只能选 。例如，最大边和次大边选了

，那么最小边可以选 。

通过观察可以推导出，如果最大边选了 的方案数为：

如果 为偶数，方案数为 ；

如果 为奇数，方案数为 。

#include <bits/stdc++.h>
using namespace std;

int main()
{
 freopen("TricountUVa.in", "r", stdin);
 freopen("TricountUVa.out", "w", stdout);
 int n;
 while(cin >> n && n >= 3)
 {
 long long cnt = 0;
 for(int a = 1; a <= n; ++a)
 for(int b = a + 1; b <= n; ++b)
 for(int c = b + 1; c <= n; ++c)
 if(a + b > c) ++cnt;
 cout << cnt;
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

1 / 16

af://n0
af://n2
af://n13

那么枚举最长边 ，累和方案数即可。

时间复杂度： 。

也可以直接推导出总方案数，请读者自行研究。

C3194.喷水装置

算法

若想浇灌整个草坪，那么某些喷头至少要覆盖到草坪的边缘。

对于每个喷头，求出它能覆盖的边缘坐标范围，那么每个喷头实际上对应一个区间。

问题转化为：有若干个区间，选择最少的区间使得整段能被覆盖，那么这就是区间覆盖问题。

将区间 ，按照 从小到大， 相同时 从大到小排序，每一次都选择一个能覆盖到最右侧的区间。

时间复杂度： 。

#include <bits/stdc++.h>
using namespace std;

int main()
{
 freopen("TricountUVa.in", "r", stdin);
 freopen("TricountUVa.out", "w", stdout);
 int n;
 while(cin >> n && n >= 3)
 {
 long long cnt = 0;
 for(int c = 4; c <= n; ++c)
 {
 if(c % 2 == 0) cnt += (c - 2) * (c - 2) / 4;
 else cnt += (c - 3) * (c - 1) / 4;
 }
 cout << cnt;
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// 区间覆盖问题
#include <bits/stdc++.h>
using namespace std;

const int N = 15010;
int n, m;

1
2
3
4
5
6

2 / 16

af://n34
af://n163

double l, w;

struct Node
{
 double l, r;
} p[N];

bool cmp(const Node &a, const Node &b)
{
 return a.l < b.l || (a.l == b.l && a.r > b.r);
}

int work()
{
 m = 0;
 scanf("%d%lf%lf", &n, &l, &w);
 for(int i = 1; i <= n; ++i)
 {
 double x, r; scanf("%lf%lf", &x, &r);
 if(r < w / 2) continue;
 p[++m].l = x - sqrt(r * r - w * w / 4);
 p[m].r = x + sqrt(r * r - w * w / 4);
 }
 sort(p + 1, p + m + 1, cmp);
 if(p[1].l > 0) return -1; // 浇灌范围无法覆盖
 int ans = 0;
 double s = 0; // 当前浇灌的最右端
 int i = 1; // 当前准备选择的喷头
 while(s < l)
 {
 double t = s;
 for(; i <= m && p[i].l <= t; ++i) s = max(s, p[i].r);
 if(s == t && s < l) return -1; // 如果不能更新并且浇灌范围无法覆盖
 ++ans; // 新增一个喷头
 }
 return ans;
}

int main()
{
 freopen("sprinkler.in", "r", stdin);
 freopen("sprinkler.out", "w", stdout);
 int T; scanf("%d", &T);
 while(T--) printf("%d\n", work());
 return 0;
}

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

3 / 16

af://n47

C2334.最小函数值

算法1

每个函数的函数值是递增的，但是它们彼此之间的函数值大小则无确定关系。

而只求最小的 个函数值，那么每个函数最多只需要求前 个函数值。

将求出的 个函数值从小到大排序，取前 个即可。

时间复杂度：O()，空间复杂度：O()，注意数据范围。

#include<bits/stdc++.h>
using namespace std;

const int N = 1010;
const int M = 1010;

long long d[N * M]; // 所有函数值
int a[N], b[N], c[N];

long long f(int a, int b, int c, int x)
{
 return (long long)a * x * x + b * x + c;
}

int main()
{
 freopen("minval.in", "r", stdin);
 freopen("minval.out", "w", stdout);
 int n, m; cin >> n >> m;
 for(int i = 1; i <= n; ++i) cin >> a[i] >> b[i] >> c[i];
 int tot = 0; // 当前计算的函数值总数
 for(int i = 1; i <= n; ++i)
 for(int x = 1; x <= m; ++x)
 d[++tot] = f(a[i], b[i], c[i], x);
 sort(d + 1, d + tot + 1);
 for(int i = 1; i <= m; ++i) cout << d[i] << " ";
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

4 / 16

af://n47
af://n48

算法2

首先，考虑最小的函数值，必定是所有函数 时的函数值的最小值， 设这个函数为 。

其次，第二小的函数值必定除了 之外的所有函数 时的函数值和函数 当 时的函数值的最小值，其他函数值依次类推。

那么每次只需要保留每个函数的一个函数值(最小的)即可，每次在这些函数值中找最小的就是答案。

将函数值放在最小堆中，每次取堆顶，每次计算的新的函数值放入堆中即可。

但是只放函数值是不够的，因为每一次还要知道最小的函数值是哪个函数，所以堆内需要同时存储函数值和函数编号。

时间复杂度：O()。

#include <bits/stdc++.h>
using namespace std;

const int N = 5e5 + 10;
int a[N], b[N], c[N];
int x[N]; // 每个函数当前的自变量值

long long f(int a, int b, int c, int x)
{
 return (long long)a * x * x + b * x + c;
}

int main()
{
 freopen("minval.in", "r", stdin);
 freopen("minval.out", "w", stdout);
 int n, m; cin >> n >> m;
 for(int i = 1; i <= n; ++i) cin >> a[i] >> b[i] >> c[i];
 // 堆内需要存储函数值和函数编号
 priority_queue<pair<long long, int>, vector<pair<long long, int> >,
 greater<pair<long long, int> > > pq;
 for(int i = 1; i <= n; ++i) // 先求每个函数x=1时的值
 {
 pq.push({f(a[i], b[i], c[i], 1), i});
 x[i] = 1;
 }
 for(int i = 1; i <= m; ++i)
 {
 pair<long long, int> t = pq.top(); pq.pop(); // 取堆顶
 cout << t.first << " ";
 int k = t.second; // 当前函数编号
 pq.push({f(a[k], b[k], c[k], x[k] + 1), k}); // 计算下一个函数值
 x[k] = x[k] + 1;
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

5 / 16

af://n59

#include <bits/stdc++.h>
using namespace std;

const int N = 5e5 + 10;
int a[N], b[N], c[N];
int x[N]; // 每个函数当前的自变量值

long long f(int a, int b, int c, int x)
{
 return (long long)a * x * x + b * x + c;
}

struct Node
{
 long long y;
 int id;
 bool operator<(const Node &b) const
 {
 return y > b.y;
 }
};

int main()
{
 freopen("minval.in", "r", stdin);
 freopen("minval.out", "w", stdout);
 int n, m; cin >> n >> m;
 for(int i = 1; i <= n; ++i) cin >> a[i] >> b[i] >> c[i];
 // 堆内需要存储函数值和函数编号
 priority_queue<Node> pq;
 for(int i = 1; i <= n; ++i) // 先求每个函数x=1时的值
 {
 pq.push({f(a[i], b[i], c[i], 1), i});
 x[i] = 1;
 }
 for(int i = 1; i <= m; ++i)
 {
 Node t = pq.top(); pq.pop(); // 取堆顶
 cout << t.y << " ";
 int k = t.id; // 当前函数编号
 pq.push({f(a[k], b[k], c[k], x[k] + 1), k}); // 计算下一个函数值
 x[k] = x[k] + 1;
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

6 / 16

af://n75

C1214.括号匹配

子任务1

对于 的数据，没有通配符，那么直接按照括号匹配算法即可。

括号的层数为左括号进栈后栈的大小，可以用 STL map来维护括号层数数值出现的次数。

#include <bits/stdc++.h>
using namespace std;

const int N = 2e6 + 10;
char s[N];
int n = 0;
map<int, int> d; // 深度记录

map<char, int> val =
{
 {'(', -1}, {'[', -2}, {'{', -3}, {'<', -4},
 {')', 1}, {']', 2}, {'}', 3}, {'>', 4}
};

bool check()
{
 stack<int> st;
 for(int i = 1; i <= n; ++i)
 {
 if(val[s[i]] <= -1) st.push(val[s[i]]), ++d[st.size()];
 else if(st.empty()) return false;
 else if(st.top() + val[s[i]] != 0) return false;
 else st.pop(), ++d[st.size()];
 }
 return st.empty();
}

int main()
{
 freopen("kakko.in", "r", stdin);
 freopen("kakko.out", "w", stdout);
 int T; scanf("%d", &T);
 while(T--)
 {
 d.clear();
 scanf("%s", s + 1);
 n = strlen(s + 1);
 if(check()) printf("TRUE %d %d\n", d.rbegin()->first, d.rbegin()->second);
 else puts("FALSE");
 }
 return 0;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

7 / 16

af://n75
af://n76

算法

对于通配符，将左括号都转化为 /及其数量，右括号都转化为 \及其数量。

于是括号匹配变为包含普通括号、 /、 \的问题，不过 /和 \可能一次包含多个。

所以栈内除了要保存字符，还要保存字符出现的次数，括号的层数为站内所有次数之和。

}42

#include <bits/stdc++.h>
using namespace std;

const int N = 2e6 + 10;
char t[N];
struct Node
{
 char c;
 int x;
} s[N]; // 合并相同的任意括号
int n = 0;
map<int, int> d; // 深度记录

map<char, int> val =
{
 {'(', -1}, {'[', -2}, {'{', -3}, {'<', -4},
 {'/', -5}, {'#', -6}, {'@', -7}, {'?', -8},
 {')', 1}, {']', 2}, {'}', 3}, {'>', 4},
 {'\\', 5}, {'*', 6}, {'&', 7}, {'!', 8}
};

bool check()
{
 stack<Node> st;
 int dsum = 0; // 当前深度之和
 for(int i = 1; i <= n; ++i)
 {
 if(val[s[i].c] <= -1) st.push(s[i]), dsum += s[i].x;
 else if(val[s[i].c] >= 1 && val[s[i].c] <= 4)
 {
 if(st.empty()) return false;
 if(st.top().c != '/' && val[st.top().c] + val[s[i].c] != 0) return false;
 ++d[dsum]; // 记录一次可能的最大深度
 Node p = st.top(); st.pop();
 --p.x; if(p.x) st.push(p);
 --dsum;
 }
 else if(s[i].c == '\\')
 {
 ++d[dsum]; // 记录一次可能的最大深度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

8 / 16

af://n83

 while(!st.empty() && s[i].x)
 {
 Node p = st.top(); st.pop();
 int y = min(p.x, s[i].x);
 p.x -= y, s[i].x -= y, dsum -= y;
 if(p.x) st.push(p);
 }
 if(s[i].x) return false;
 }
 }
 return st.empty();
}

int main()
{
 freopen("kakko.in", "r", stdin);
 freopen("kakko.out", "w", stdout);
 int T; scanf("%d", &T);
 while(T--)
 {
 d.clear();
 n = 0;
 scanf("%s", t + 1);
 for(int i = 1; t[i] != '\0'; ++i)
 {
 if(val[t[i]] >= -4 && val[t[i]] <= 4) s[++n] = { t[i], 1 };
 else if(val[t[i]] <= -5) // / # @ ?
 {
 if(s[n].c != '/') s[++n] = { '/', 0 };
 if(t[i] == '/') s[n].x += 1;
 else if(t[i] == '#') s[n].x += 2;
 else if(t[i] == '@') s[n].x += 4;
 else if(t[i] == '?') s[n].x += 8;
 }
 else if(val[t[i]] >= 5) // \ * & !
 {
 if(s[n].c != '\\') s[++n] = { '\\', 0 };
 if(t[i] == '\\') s[n].x += 1;
 else if(t[i] == '*') s[n].x += 2;
 else if(t[i] == '&') s[n].x += 4;
 else if(t[i] == '!') s[n].x += 8;
 }
 }
 if(check()) printf("TRUE %d %d\n", d.rbegin()->first, d.rbegin()->second);
 else puts("FALSE");
 }

 return 0;
}

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

9 / 16

af://n92

C0487.整数合并

算法

埃氏筛的过程中每个数都被它的所有质因子筛一次。

在埃氏筛的过程中，当用大于等于 质数 进行筛选时，合并所有 与其倍数所在集合。

集合合并可以使用并查集。

#include <bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;
bool v[N]; // 是否为素数
int f[N];
bool vis[N];

int get(int x)
{
 if(x == f[x]) return x;
 else return f[x] = get(f[x]);
}

void merge(int x, int y)
{
 int fx = get(x), fy = get(y);
 if(fx != fy) f[fy] = fx;
}

int main()
{
 freopen("setb.in", "r", stdin);
 freopen("setb.out", "w", stdout);
 int A, B, P; cin >> A >> B >> P;
 for(int i = 1; i <= B; ++i) f[i] = i;
 memset(v, 1, sizeof(v));
 for(int i = 2; i <= B; ++i)
 {
 if(!v[i]) continue;
 for(int j = 2; j <= B / i; ++j)
 {
 v[i * j] = 0;
 if(i >= P) merge(i, i * j); // 有大于P的公共质因子
 }
 }
 for(int i = A; i <= B; ++i) vis[get(f[i])] = true;
 int cnt = 0;
 for(int i = 1; i <= B; ++i) if(vis[i]) ++cnt;
 cout << cnt;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

10 / 16

af://n92
af://n93

COGS 4187 接竹竿

算法1

模拟

对于每个询问，利用栈模拟接竹竿的过程。

时间复杂度：O()；得分： 分。

 return 0;
}

4041
42

#include <bits/stdc++.h>
using namespace std;

const int N = 110;
int a[N];
int st[N];

int main()
{
 freopen("bamboo.in", "r", stdin);
 freopen("bamboo.out", "w", stdout);
 int T; scanf("%d", &T);
 while(T--)
 {
 int n; scanf("%d", &n);
 for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);
 int q; scanf("%d", &q);
 while(q--)
 {
 int l, r; scanf("%d%d", &l, &r);
 int top = 0;
 for(int i = l; i <= r; ++i)
 {
 int flag = 0;
 for(int j = top; j >= 1; --j)
 if(a[i] == st[j])
 {
 flag = 1;
 while(st[top] != a[i]) --top;
 --top;
 break;
 }
 if(!flag) st[++top] = a[i];
 }
 printf("%d\n", top);
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

11 / 16

af://n102
af://n103

算法2

利用模拟来接竹竿速度慢的原因是每次都只消除一串，可以利用倍增法快速消除。

定义 表示从 开始消除 次能消除的位置。

显然 后面第一个与 相同的牌出现的位置，如果没有，则令其为 。

显然 ，要求 。

那么对于询问 ，令 ，表示当前尝试消除的牌。

首先看 ，如果 ，说明消除一次会越界，那么就令 ，当前牌无法消除，记录答案 。一直执行上述判定，直到牌全部用完或者当前牌可以消除。

如果当前牌可以消除，那么从大到小枚举消除的次数 ，如果 ，那么就令 。

重复以上过程直到能消除的牌全部消除完。

时间复杂度： ；得分： 分。

 }
 return 0;
}

37
38
39

#include <bits/stdc++.h>
using namespace std;

const int N = 15010;
int a[N];
int p[15]; // 后面最近出现的位置
int f[N][25]; // 消除2^j次能消除到哪

int main()
{
 freopen("bamboo.in", "r", stdin);
 freopen("bamboo.out", "w", stdout);
 int T; scanf("%d", &T);
 while(T--)
 {
 int n; scanf("%d", &n);
 for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);
 for(int j = 0; j <= 20; ++j)
 for(int i = 1; i <= n; ++i)
 f[i][j] = n + 1;
 for(int i = 1; i <= 13; ++i) p[i] = n + 1;
 for(int i = n; i >= 1; --i) f[i][0] = p[a[i]], p[a[i]] = i;
 for(int j = 1; j <= 20; ++j)
 for(int i = 1; i <= n; ++i)
 if(f[i][j - 1] + 1 <= n)
 f[i][j] = f[f[i][j - 1] + 1][j - 1];

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

12 / 16

af://n112

COGS 3651 消防演练

算法1：枚举

枚举任意两个顶点 ，求出两者之间的路径，求出相应封锁的道路，取最大值。

以顶点 为根，进行 dfs，可以求出到任意顶点的路径，求出最大值即可。

时间复杂度：O()。

预计得分： 分。

 int q; scanf("%d", &q);
 while(q--)
 {
 int l, r; scanf("%d%d", &l, &r);
 int ans = 0;
 while(l <= r)
 {
 while(l <= r && f[l][0] > r) ++l, ++ans; // 消除一次越界
 if(l > r) break;
 for(int j = 20; j >= 0; --j)
 if(f[l][j] <= r) { l = f[l][j] + 1; break;}
 }
 printf("%d\n", ans);
 }
 }
 return 0;
}

2627
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// 50分 O(N^2)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

const int N = 1010;
int n;
int ans = 0;
vector<int> g[N];

// 遍历从x点出发的所有路径
void dfs(int x, int fa, int val)
{
 for(int j = 0; j < g[x].size(); ++j)
 {
 int y = g[x][j];
 if(y != fa)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

13 / 16

af://n133
af://n134

算法2：树形DP

定义 表示从顶点 出发向 的子树中走的路径的封锁道路数，这里路径可以只包含一个点。

那么对于任意顶点 为根的子树，可以有两种路径：

顶点 和它的一个孩子组合成的路径；

顶点 和它的两个孩子组合成的路径。

如果顶点 和它的一个孩子组合成的路径，那么对于它的孩子 ，则有 ，其中 ，而答案

，其中 表示 是否有父结点。

如果顶点 和它的两个孩子组合成的路径，那么对于它的孩子 ，显然有 ，其中 表示

是否有父结点。

时间复杂度： 。

 {
 int t = g[y].size();
 ans = max(ans, val - 1 + t - 1);
 dfs(y, x, val - 1 + t - 1);
 }
 }
}

int main(void)
{
 freopen("drill.in", "r", stdin);
 freopen("drill.out", "w", stdout);
 scanf("%d", &n);
 for(int i = 1; i <= n - 1; ++i)
 {
 int x, y;
 scanf("%d%d", &x, &y);
 g[x].push_back(y);
 g[y].push_back(x);
 }
 for(int i = 1; i <= n; ++i) dfs(i, 0, g[i].size());
 printf("%d\n", ans);
 return 0;
}

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// 100分 O(N)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

1
2
3
4
5

14 / 16

af://n145

const int N = 2e5 + 10;
int n;
int ans = 0, d[N];
vector<int> g[N];

void dp(int x, int fa)
{
 for(int j = 0; j < g[x].size(); ++j)
 {
 int y = g[x][j];
 if(y != fa) dp(y, x);
 }
 int s = g[x].size() - (fa != 0); // 孩子个数
 d[x] = s;
 int t = 0;// 孩子中当前d值最大
 for(int j = 0; j < g[x].size(); ++j)
 {
 int y = g[x][j];
 if(y != fa)
 {
 d[x] = max(d[x], d[y] + s - 1);
 ans = max(ans, d[y] + s - 1 + (fa != 0)); // 和一个孩子组成路径
 ans = max(ans, t + d[y] + s - 2 + (fa != 0)); // 和两个孩子组成路径
 t = max(t, d[y]);
 }
 }
}

int main(void)
{
 freopen("drill.in", "r", stdin);
 freopen("drill.out", "w", stdout);
 scanf("%d", &n);
 for(int i = 1; i <= n - 1; ++i)
 {
 int x, y;
 scanf("%d%d", &x, &y);
 g[x].push_back(y), g[y].push_back(x);
 }
 dp(1, 0);
 printf("%d\n", ans);
 return 0;
}

67
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

15 / 16

16 / 16

	COGS 1476 数三角形
	算法1：枚举法
	算法2

	C3194.喷水装置
	算法

	C2334.最小函数值
	算法1
	算法2

	C1214.括号匹配
	子任务1
	算法

	C0487.整数合并
	算法

	COGS 4187 接竹竿
	算法1
	算法2

	COGS 3651 消防演练
	算法1：枚举
	算法2：树形DP

