记录编号 160626 评测结果 AAAAAAAAAA
题目名称 [HAOI 2015]数字串拆分 最终得分 100
用户昵称 Gravatarcstdio 是否通过 通过
代码语言 C++ 运行时间 1.881 s
提交时间 2015-04-29 07:48:55 内存使用 27.16 MiB
显示代码纯文本
  1. #include<iostream>
  2. #include<cstdio>
  3. #include<algorithm>
  4. #include<cstring>
  5. #include<cmath>
  6. using namespace std;
  7. typedef long long LL;
  8. const int SIZEN=510;
  9. const int MOD=998244353;
  10. int timer=0;
  11. class Matrix{
  12. public:
  13. int n,m;
  14. int s[5][5];
  15. inline void clear(int n_,int m_){
  16. n=n_;
  17. m=m_;
  18. memset(s,0,sizeof(s));
  19. }
  20. inline void resize(int n_,int m_){
  21. n=n_;
  22. m=m_;
  23. }
  24. inline void unit(int x){
  25. n=m=x;
  26. memset(s,0,sizeof(s));
  27. for(int i=0;i<n;i++) s[i][i]=1;
  28. }
  29. inline void operator *= (const Matrix &b){
  30. static int c[5][5];
  31. LL now;
  32. int i,j,k;
  33. for(i=0;i<n;i++){
  34. for(j=0;j<b.m;j++){
  35. now=0;
  36. for(k=0;k<m;k++){
  37. now+=(LL)s[i][k]*b.s[k][j];
  38. }
  39. c[i][j]=now%MOD;
  40. }
  41. }
  42. memcpy(s,c,sizeof(s));
  43. m=b.m;
  44. }
  45. };
  46. void print(Matrix a){
  47. cout<<a.n<<" "<<a.m<<": "<<endl;
  48. for(int i=0;i<a.n;i++){
  49. for(int j=0;j<a.m;j++){
  50. cout<<a.s[i][j]<<" ";
  51. }
  52. cout<<endl;
  53. }
  54. cout<<endl;
  55. }
  56. inline Matrix operator * (const Matrix &a,const Matrix &b){
  57. Matrix c;
  58. c.n=a.n,c.m=b.m;
  59. LL now;
  60. int i,j,k;
  61. for(i=0;i<c.n;i++){
  62. for(j=0;j<c.m;j++){
  63. now=0;
  64. for(k=0;k<a.m;k++){
  65. now+=(LL)a.s[i][k]*b.s[k][j];
  66. }
  67. c.s[i][j]=now%MOD;
  68. }
  69. }
  70. return c;
  71. }
  72. inline Matrix operator + (Matrix a,const Matrix &b){
  73. for(int i=0;i<a.n;i++){
  74. for(int j=0;j<a.m;j++){
  75. a.s[i][j]=(a.s[i][j]+b.s[i][j])%MOD;
  76. }
  77. }
  78. return a;
  79. }
  80. inline Matrix slowpow(Matrix a,int n){
  81. Matrix ans;
  82. ans.unit(a.n);
  83. for(int i=1;i<=n;i++) ans*=a;
  84. return ans;
  85. }
  86. inline Matrix quickpow(Matrix a,int n){
  87. Matrix ans;
  88. ans.unit(a.n);
  89. while(n){
  90. if(n&1) ans*=a;
  91. a*=a;
  92. n>>=1;
  93. }
  94. return ans;
  95. }
  96. char S[510];
  97. int L,M;
  98. Matrix step;
  99. Matrix seq[SIZEN][SIZEN];
  100. Matrix DP[SIZEN];
  101. int F[SIZEN]={0};
  102. void work(void){
  103. DP[0].unit(M);
  104. for(int i=1;i<=L;i++){
  105. DP[i].resize(M,M);
  106. for(int k=1;k<=i;k++){
  107. DP[i]=DP[i]+DP[i-k]*seq[i-k+1][i];
  108. }
  109. }
  110. F[0]=1;
  111. for(int i=1;i<=M;i++){
  112. for(int k=1;k<=M;k++){
  113. if(i-k<0) continue;
  114. F[i]=(F[i]+F[i-k])%MOD;
  115. }
  116. }
  117. Matrix ori;
  118. ori.clear(M,1);
  119. for(int i=0;i<M;i++) ori.s[i][0]=F[i];
  120. ori=DP[L]*ori;
  121. printf("%d\n",ori.s[0][0]);
  122. }
  123. Matrix step_pow[20];
  124. void prepare(void){
  125. step.clear(M,M);
  126. for(int i=0;i<M-1;i++) step.s[i][i+1]=1;
  127. for(int i=0;i<M;i++) step.s[M-1][i]=1;
  128. step_pow[0].unit(M);
  129. for(int i=1;i<20;i++) step_pow[i]=step_pow[i-1]*step;
  130. for(int i=1;i<=L;i++){
  131. Matrix now;
  132. now.unit(M);
  133. for(int j=i;j<=L;j++){
  134. now=quickpow(now,10)*step_pow[S[j]-'0'];
  135. seq[i][j]=now;
  136. }
  137. }
  138. }
  139. void read(void){
  140. scanf("%s",S+1);
  141. L=strlen(S+1);
  142. scanf("%d",&M);
  143. }
  144. int main(){
  145. freopen("haoi2015_str.in","r",stdin);
  146. freopen("haoi2015_str.out","w",stdout);
  147. read();
  148. prepare();
  149. work();
  150. return 0;
  151. }